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This week we will discuss evolutionary applications of quantitative genetics. These models are distinct from
the population genetic models we’ve looked at so far in that they focus on the evolution of ‘quantitative’ rather
than categorical traits. Things like body mass, height, limb length, fecundity, etc. rarely fall into discrete
categories and are typically thought to be controlled by genes at many loci. Rather than explicitly model
changes in the frequencies of particular genes, we focus on partitioning phenotypic variation into more generic
“genetic” and “envrionmental” components. This branch of modeling has its origins in breeding studies
attempting to improve yields from plants and livestock. In the 1980’s and 1990’s a number of researchers
realized that the methods that breeders had developed for predicting the results of artificial selection could
also be used to measure selection in wild populations and predict evolutionary trajectories, without knowing
anything about the genes involved (at least for a few generations).

To give you an overview of this week’s short tour of quantitative genetics, we will start by building the explicit
genetic model for a quantitative character and then use this framework for understanding and predicting
evolution in these traits. Along the way we will talk about the ‘infinitessimal model,’ ‘heritability’, ‘selection
differentials,’ the ‘breeder’s equation,’ and the response to selection. We will also talk about the Price
equation, Fisher’s fundamental theorem of natural selection, and what happens when we have multiple
correlated traits.

The starting point for this sort of thinking is to assume that there are a large number of unlinked loci each
contributing some small amount to the phenotype. That is, we will assume that there are N loci and that
each locus contributes additively to the phenotype. Ultimately, we will write the phenotype as z = g + ε
where z is the phenotype, g is the genetic contribution to phenotype, and ε is the ‘environmental’ contibution.
We assume throughout that the mean and variance of the envrionmental effect are 0 and Ve respectively and
that the genetice and environmental effects are independent. Extensions of this framework allow for epistasis,
maternal effects, and genotype x environment interactions.

Single locus

Before we get into applications of quantitative genetics, I think it is a good idea to see how these models are
built up from the single-locus models we’ve worked with all quarter. To make the connection, we start by
saying that the genetic contribution to phenotype of locus i is gi which takes on values

gi =


+γi AA
δi Aa
−γi aa

So the homozygotes at locus i get ±γi added to their phenotype. Heterozygotes at locus i get δi, which is 0 if
there is no dominance, between 0 and γi if there is dominance and is greater than γi if there is overdominance.
For simplicty, let’s assume that there is no dominance, i.e. in all of the following δi = 0.

Let pi be the frequency of allele A in the population and qi = 1− pi is the frequency of allele a. Let’s assume
that the population is at Hardy-Weinberg equilibrium so the genotype frequencies are p2

i , 2piqi, q
2
i for AA, Aa,

and aa respectively. Now we’ll calculate the mean and variance in phenotype in the population contributed
by that locus. To make the notation a little less cumbersome, I am (temporarily) dropping the subscript i
which we will use again when we get to more than 1 locus.

The mean genotype (and phenotype, since E(ε) = 0) is given by
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(1)
m = E(g) = p2(γ) + 2pq(0) + q2(−γ) = (p2 − q2)γ = (p− q)γ

The variance is most easily calculated using the handy fact that V (x) = E(x2) − E(x)2. Here, E(g2
i ) =

(p2
i + q2

i )γ2. Subtracting E(gi)2 and simplifying, we get

(2)
V (gi) = 2piqiγ

2

Next, let’s think about the relationship between parent and offspring phenotypes in this single locus model.
The points in the plot below show the possible offspring genotypes for each parent genotype. The things in
parentheses indicate the frequency with which these offspring occur, when mating is random and we have
averaged over all other parent genotypes. To make this more concrete, consider the frequency with which
AA parents make Aa offspring: with probability p2 they mate with an AA parent and all offspring are AA
and with probability 2pq they mate with a Aa parent and half of their offspring are AA. So, overall, given
that one parent is AA, the frequency of AA offspring is p2 + 2pq/2 = p2 + pq = p(p+ q) = p. It is not hard
(though sort of tedious) to work out the rest.
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The upshot of this figure is that it is clear that parent and offspring genotypes are not independent; clearly
knowing one parent’s genotype tells you something about the likely genotypes of offspring which is the
definition of non-independence. And, of course, this is biologically obvious. In previous problems where we
had just one variable, we summarized them in terms of the mean and variance. Now, we have two variables -
the parent and offspring genotypes (or phenotypes). To summarize the relationship between them, we will
introduce a new idea - the covariance.
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A mathematical aside

Covariance measures the linear dependence between two variables. Specifically, the covariance between two
random variables is defined as

(3)
Cov(X,Y ) = E[(X − x̄)(Y − ȳ)]

where x̄ and ȳ are the mean of X and Y respectively. If you substitute X in for Y in this definition, you end
up with the variance of X - hence the name, covariance. To build some intuition for covariance, here’s some
code that simulates two random variables with different amounts of covariance
n=100 #number to sample
C<-c(0,1,2,10)

par(mfrow=c(1,4))
for (i in 1:4){

x<-rnorm(n,0,1)
y<-(C[i]*x+rnorm(n,0,.5))

plot(x,y,main=C[i])
}
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we started this aside by saying that the covariance measures the linear dependence between two variables. Let’s
see what this means: Say that Y = a+bX+ε where the last term is noise that has zero mean and is independent
of X. So ȳ = a+ bx̄ and plugging this into (3), we get Cov(X,Y ) = E[(X − x̄)(a+ bX + ε− (a+ bx̄))] =
E[(X − x̄)(bX − bx̄)] = bV ar(X). So if we want to recover the slope, we divide the covariance by the variance
in x, i.e. b = Cov(X,Y )/V ar(X).
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Here are a few handy facts about covariance: (@fact1)

Cov(aX, bY ) = abCov(X,Y )

(@fact2)
Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z)

(@fact3)
Cov(X,Y ) = E(XY )− E(X)E(Y )

Another way of thinking about the covariance between two variables is that it is the part the two variables
have in commong. That is, if U = X + Y and V = X + Z, where X, Y , and Z are all independent, the
covariance between U and V is the variance in X, i.e. Cov(U, V ) = Cov(X + Y,X + Z) = Cov(X,X) +
Cov(X,Z) + Cov(Y,X) + Cov(Y,Z) = Cov(X,X) = V ar(X) __

Single locus (Cont’d)

Coming back to the parent-offspring relationship, let’s figure out the covariance, so that we can figure out the
slope of the line relating parent and offspring phenotypes. We are going to use the foundational assumtion
that the phenotype is z = g + ε and that the environmental contribution, ε, is independent of the genetic
contribtuion, g. In addition, we will assume that the envrionmental components of parents εp and offspring
εo are independent as well. These assumptions mean that Cov(g, ε) = 0 and Cov(εp, εo) = 0. So, let’s
evaluate the phenotypic covariance between parents and offspring, Cov(zp, zo). Plugging in the genetic and
envrironmental contributions, we get Cov(zp, zo) = Cov(gp + εp, go + εo). Using handy fact (@fact2) this
becomes Cov(zp, zo) = Cov(gp, go) + Cov(εp, εo) + Cov(gp, εo) + Cov(εp, go). All of the terms on the right
side except the first are zero by assumption, leaving, Cov(zp, zo) = Cov(gp, go).

To find Cov(gp, go), the easiest thing to do is to use handy fact (@fact3), calculate E(gpgo) and subtract off
E(gp)E(go) since we already found E(gp) = γ(p− q) and if there is no selection, the mean for offspring must
be the same so that E(gp)E(go) = γ2(p− q)2. To find E(gpgo) we write down each possible combination of
gp and go, multiply by the frequency with which they occur, and sum up to get the mean. There are alot of
terms and I find it easiest to avoid screwing up if I do this systematically. So we’ll start from the aa parent,
do all of it’s offspring, then the Aa parent, etc. Most of the terms will end up being 0 because we’ve assumed
there’s no dominance, but I will leave them in the initial calculation so you can see how we would deal with
δ 6= 0.

E(gpgo) = (−γ)(−γ)q3+(−γ)(0)q2p+(0)(−γ)(2pq)(q/2)+(0)(0)(2pq)(1/2)+(0)(γ)(2pq)(p/2)+(γ)(0)p2q+(γ)(γ)p3

And because of all those zeros this boils down to E(gpgo) = γ2(q3 + p3). To get the covariance we subtract
off E(gp)E(go) to get Cov(gp, go) = γ2(q3 + p3)− γ2(p− q)2 = pqγ2. This last simplification is not too hard
if you remember that p+ q = 1. So that’s the covariance between one parent and its offspring.

If we want the slope of the line describing the relationship between the parent phenotype and offspring
phenotype, we need Cov(zp, zo)/V ar(zp). From the stuff we did at the beginning, we know that V ar(zp) =
V ar(gp + εp) = V ar(gp) + V ar(εp) = 2pqγ2 + Ve, so the slope is

(4)

bo,p = pqγ2

2pqγ2 + Ve

This is for a single parent and it’s offspring. More often we use the relationship between the average parent
(or ‘mid-parent’) and the offspring. Now, we could go back and calculate all the possible pairs of parents
and their averages and the possible offspring. But we can also do this in a much shorter way, by making
use of handy fact (@fact2). The average parent phenotype is z̄p = (zs + zd)/2 where zs and zd are the
paternal (sire) and maternal (dam) phenotypes. Again, the slope is going to be the covariance divided by
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the variance. So let’s start by figuring the covariance. Using (@fact2), Cov(z̄p, zo) = Cov((zs + zd)/2, zo) =
Cov(zs/2, zo) + Cov(zd/2, zo) = 1

2 [Cov(zs, zo) + Cov(zd, zo)] = Cov(zp, zo). The second to last step made
use of handy fact (@fact1) and the final step comes from the assumption that the genetic covariance between
fathers and offspring is the same as the genetic covariance between mothers and offspring. This assumption
will be violated if there are sex-linked traits, sex-specific selection, etc. But under these assumptions we’ve
found that the covariance between the average parent phenotype and their offspring is the same as for one
parent.

Now let’s look at the variance. Since z̄p = (zs + zd)/2, the variance is V ar(z̄p) = V ar((zs + zd)/2) =
V ar(zs)/2 + V ar(zd)/2 assuming that the parent phenotypes are independent. Parent phenotypes wont be
independent if there is assortative mating or if the parents are related or if they were reared in a common
environment. Lots of reasons. (Using (@fact2) can you figure out how to account for non-independent parent
phenotypes?) But let’s stick with the simple case for now and assume they are independent. This means that
the slope (i.e. the covariance / variance) is given by

(5)

bo,p̄ = pqγ2

1
2 (2pqγ2 + Ve)

= 2pqγ2

2pqγ2 + Ve

which is the ratio of the genetic variance to the phenotypic variance, otherwise known as the heritability.
This also means that the slope of the line for a single parent (4) is equal to 1/2 of the heritability.

So far, we have assumed a) that genetic effects and environmental effects are independent and b) that
‘genetic effects’ are passed on to offspring via Mendelian genetics. These assumptions immediately imply
that V ar(z) = V ar(g) + V ar(ε) and that the covariance between phenotype and genotype is Cov(z, g) =
V ar(g). Along the way, we found that the slope of a line between random variables X and Y is given by
b = Cov(X,Y )/V ar(X). This, in turn, implies that the slope of the phenotype (x)-genotype (y) line will be
b = Cov(z, g)/V ar(z) = V ar(g)/V ar(z) which is the ‘heritability’. Using Mendelian genetics for a single locus,
we deduced that the covariance between parents and offspring is Cov(zo, zp) = 1

2V ar(g) and that the slope
of the line relating the average parent phenotype to offspring phenotype is bo,p̄ = V ar(g)/[V ar(g) + Ve] =
V ar(g)/V ar(z) which is also the heritability. Although we’ve gone through all this for just one locus, it
will turn out that the results are analogous for many loci, under the assumption that they all contribute
additively.

Many loci

Now, let’s think about what happens when we have a bunch of loci that contribute additively. To try to make
this concrete, let’s simulate the distribution of genetic effects (i.e. the sum of the gi’s) for a large number of
individuals. This first code chunk assumes 2 loci with random gene frequencies. You might want to run it a
bunch of times to see how much it changes, then bump the number of loci to say 30 and see what happens.
You might also want to change the range of gene frequencies to see how this affects the distribution from one
time to the next.
N=1000 #number of individuals
nloci=2 #number of loci
gam=1 #all loci have same effect.
delta=1;

p_i<-runif(nloci,0,1)

g<-c(gam,delta,-gam)
pg<-function(p) c(p^2,2*p*(1-p),(1-p)^2)

z<-matrix(data=NA,nrow=nloci,ncol=N)
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for (i in 1:nloci){z[i,]=sample(g,N,prob=pg(p_i[i]),replace=TRUE)}
gen_effect=apply(z,2,sum)
hist(gen_effect)
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In this two-locus case, variation in the gene frequencies can skew the distribution of genetic effects strongly
in one direction or the other. We should expect this effect to decrease as we add up the effects of more and
more loci - Here’s a plot illustrating how the distribution of genetic effects changes as we increase the number
of loci.
N=10000 #number of individuals
delta=0;
gam=1 #all loci have same effect.

nloci<-c(2,5,10,30) #number of loci

par(mfrow=c(1,4))

for (l in 1:4){
p_i<-runif(nloci[l],0,1)

g<-c(gam,delta,-gam)/sqrt(nloci[l]) #rescaling gamma so that spread is same for all cases
pg<-function(p) c(p^2,2*p*(1-p),(1-p)^2)

z<-matrix(data=NA,nrow=nloci[l],ncol=N)
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for (i in 1:nloci[l]){z[i,]=sample(g,N,prob=pg(p_i[i]),replace=TRUE)}
gen_effect=apply(z,2,sum)
hist(gen_effect,breaks=seq(-4*gam,4*gam,length=30),xlim=c(-4*gam,4*gam),main=nloci[l])

}
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As we increase the number of loci, the distribution for the genetic effect get’s closer and closer to Gaussian,
provided of course that the gene frequencies are not all close to 0 or 1 (You might want to try this and see
what happens). This is a consequence of the central limit theorem.

Next, let’s recall that the individual’s phenotype is not quite equal to its genotype. The default assumption
here is that the phenotype is given by the sum of the genetic effect and some normally distributed noise, i.e.
ε N(0, Ve). So, we’ll re-do the simulation and plot histograms of phenotypes instead of genotypes as well as a
plot of genotype v. phenotype.
N=10000 #number of individuals
delta=0;
gam=1 #all loci have same effect.

Ve=.02;

nloci<-c(2,5,10,30) #number of loci

par(mfrow=c(2,4))

for (l in 1:4){
p_i<-runif(nloci[l],0,1)
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g<-c(gam,delta,-gam)/sqrt(nloci[l]) #rescaling gamma so that spread is same for all cases
pg<-function(p) c(p^2,2*p*(1-p),(1-p)^2)

z<-matrix(data=NA,nrow=nloci[l],ncol=N)

for (i in 1:nloci[l]){z[i,]=sample(g,N,prob=pg(p_i[i]),replace=TRUE)}
gen_effect=apply(z,2,sum)
phenotype=gen_effect+rnorm(N,0,sqrt(Ve))
hist(phenotype,breaks=seq(-4*gam,4*gam,length=30),xlim=c(-4*gam,4*gam),main=nloci[l])
plot(gen_effect,phenotype)

}
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There are several things to note from this. First, looking at the histograms, the differences that were so
obvious between 2 loci and 30 loci in the earlier figure are now smoothed over by the addition of a relatively
small amount of noise. To be specific, if $V_e>Second, the scatterplots show the relationship between
genotype and phenotype in this model. For two and 5 loci there are obvious gaps between genotypes; the
variation in phenotype within a genotype is due to ‘envrionmental’ noise.

Let’s take a step back and try to think about these observations a bit more carefully. To start, what are the
mean and variance in the genotype and phenotype? And did the covariance between parents and offspring

change? Let’s say that the genetic contribution to an individual’s phenotype is g =
L∑

i=1
gi where L is the

number of loci contributing to the trait. Let mi be the mean genetic effect for locus i and Vgi be the genetic
variance at locus i. Since we are assuming additivity and independence, the mean genotype is
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(6)

E(g) = E

[
L∑

i=1
gi

]
=

L∑
i=1

E(gi)

If we substitute our result for the mean from earlier, E(gi) = γ(pi−qi) we get E(g) =
∑

i γ(pi−qi) = 2Lγ(p̄− 1
2 ).

The intuition here is that the mean phenotype in the population depends not on the particular frequencies of
individual loci, but on the average frequency of the A allele. This is a direct consequence of our assumption
that the genetic contributions at all loci are the same.

To find the genetic variance in the population, we use the same sort of trick -assuming independence makes
this all nice and tidy.

(7)

V ar(g) = V ar

[
L∑

i=1
gi

]
=

L∑
i=1

V ar(gi)

Inserting our earlier results on the genetic variance from a single locus, we get V ar(g) =
L∑

i=1
2γ2piqi =

2γ2L(p̄− p̄2) where p̄2 is the average value of p2 (or the second moment). We could simplify this a bit more,
but without much gain in intuition.

Similarly, the covariance between a parent and its offspring is given by

(8)

cov(go, gp) = Cov

 L∑
i=1

goi,

L∑
j=1

gpj

 =
L∑

i=1

L∑
j=1

Cov(goi, gpj) = 1
2

L∑
i=1

V ar(gpi)

To get to the third expression, we apply handy fact (@fact2) and to get the last expression we make use of
the assumption that the loci are independent (so all covariances for i 6= j are 0). As you recall, the genetic
covariance is the same whether we use one parent or the average of both.

Finally the slope of the line for the relationship between offspring phenotypes and the average parent
phenotype is given by the genetic covariance divided by the phenotypic variance which is

(9)

bo,p̄ = cov(zo, z̄p)
V ar(z̄p) =

1
2

L∑
i=1

V ar(gpi)
1
2V ar(z)

= V ar(g)
V ar(z)

which is - again - the ‘heritability.’ It is worth point out that the heritability is the ratio of genetic
variance to total phenotypic variance. As such, it will change as gene frequencies in the population
change.

Before we move on, let’s be clear that the reason the many-locus verion is nearly identical to the single
locus version is because of the mountain of assumptions we’ve made getting here. Most importantly, we’ve
assumed that all loci contribute additively and independently. If epistatic interactions (i.e. non-additivity) or
linkage (i.e. non-independence) are present the results are considerably more complicated. It is also worth
mentioning that what we’ve been calling genetic variance is typically referred to as the ‘additive genetic
variance’, denoted by VA because it is the part of the genetic variance that combines additively in determining
phenotypes. This is distinct from the total genetic variance VG which includes all those other, non-additive,
effects like dominance and epistasis. So from here on in, we will use VA to be consistent with the literature.

Selection

Now that we’ve laid the genetic foundation, let’s start thinking about how we might use it to predict
evolutionary responses in quantitative traits. To get going on this, let’s take another look at the relationship
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between parent and offspring phenotypes
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The black line is the predicted relationship between parents and offspring using (9). Let’s think about this a
little more. This line gives us the average offspring phenotype for a given mid-parent phenotype. That is, we
have E(zo|z̄p) = a+ bo,p̄z̄p. If z̄p was at the population mean phenotype, E(z) = m, the mean for offspring
would be E(zo|m) = a+ bo,p̄m which, in the absence of selection ought to give us E(zo|m) = m. So if we
subtract these two equations, we get E(zo|z̄p)−m = bo,p̄(z̄p −m) which tells us that the difference between
the offspring mean phenotype and the population mean is given by the slope times the difference between
their parent’s mean and that of the population. Recall that the slope is the heritability, i.e. h2 = bo,p̄. So, in
the figure above, m = 0 and if we were to breed parents that were in between the red lines, z̄p ≈ 1, we would
predict the average phenotype in their offspring to be E(zo|z̄p = 1) = h2(1− 0) = h2.

Tangent - It is kind of fun to think about how we might apply this to. . . us. My mother-in-law, who is very
sweet but not a scientist, recently claimed that male children were always taller than their parents. This
is clearly impossible, but it prompted me to try and evaluate whether my boys would be taller than I am.
Here’s a rough version of the analysis: The mean height in the US is roughly 5’7" (averaging across men and
women) and the heritability for height is roughly 0.8 (The CDC collects height data and its not too hard to
find a publication on human heritability). I am 5’11" and my wife is 5’1“, so our ‘mid-parent value’ is 5’6”.
So, the best guess for my kids height is 5’7“+0.8(5’6”-5’7“)=5’6.2” which is not only less than my height,
but less than the population mean! (I actually re-did this calculation assuming sex-specific values for mean
height and heritability which comes out a little different but is too long for a tangent - but the upshot is that
my kids should still end up shorter!) __

Now, since this equation for the mean phenotype of offspring is linear, we can extend it easily to the case
where we allow more than one parent phenotype to reproduce. We do so by recalling the handy fact that
E(X) = EY [E(X|Y )] (aka the ‘Law of Iterated Expectations’) which in this case, means that we want
E(zo) = Ez̄p

[E(zo|z̄p)] = m + h2Ez̄p
[z̄p −m] = m + h2[E(z̄p) −m]. This gets us to the breeder’s equation

which is usually written as
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(10)
∆R = h2∆S

where h2 is the heritability, ∆S = E(z̄p)−m is known as the selection differential, and ∆R = E(zo)−m is
the response to selection. Another way of interpretting the heritability is that it is the fraction of the change
in the mean phenotype in parents that is transmitted to the next generation.

Fitness

Let’s pause for a bit, momentarily foresaking all our hard-earned knowledge about genetics, and think about
selection more generally. We have previously defined ‘fitness’ in a variety of ways, using various proxies.
To begin, let’s think about fitness in terms of the survival of individuals in the parent generation prior to
reproduction. If we have N total individuals and they have phenotypes z1, ...zN the mean phenotype before
selection is given by z̄ = 1

N

∑
i zi. Let’s say that fitness (survival) is some function of the phenotype, i.e.

W (z) that takes values 0 or 1. The number of surviving individuals is then Ns =
∑

i W (zi) and the mean
phenotype among survivors is z̄s = 1

Ns

∑
i ziW (zi). We can play a little trick here divide bot the numerator

and denominator by N to get

z̄s =

∑
i

ziW (zi)
N∑

i
W (zi)
N

= zW

W

Now the denominator is the mean fitness (survival) and the numerator is the average of the product of the
trait and fitness. We can re-arrange handy fact(@fact3) to see that E(XY ) = Cov(X,Y ) + E(X)E(Y ).
Applying this identity to the mean of survivors gets us to

z̄s = zW

W
= Cov(z,W ) + z̄W

W
= z̄ + Cov(z,W )

W

So the change in the mean due to a round of selection, i.e. the selection differential, is given by the covariance
between the trait and fitness divided by the mean fitness, ∆S = ∆z̄ = Cov(z,W )/W , which is equivalent
to the covariance between the trait and relative fitness, ∆S = Cov(z, ω), where relative fitness is defined as
ω(z) = W (z)/W .

Let’s do this again, but this time define fitness as the number of offspring produced. That is, parents with
phenotype zi, make W (zi) offspring. The total number of offspring produced is Nb =

∑
i W (zi). In light of

our earlier work, we probably want to allow for the possibility that offspring are not identical to parents.
Instead, we can think about the offspring phenotype as zi + ∆zi. The mean phenotype among offspring is
z̄o = 1

Nb

∑
i(zi + ∆zi)W (zi). The mean following a round of selection is then given by

(11)

z̄o = (z + ∆z)W
W

= z̄ + Cov(z,W )
W

+ Cov(∆z,W )
W

So what is ∆z? It’s the difference between the parent and offspring phenotypes. We can use our genetic model
to approximate this as follows: z̄o−m = h2(z̄p−m) so ∆z = zo−zp ≈ m+h2(z̄p−m)− z̄p = (h2−1)(zp−m).
Plugging this in, we get Cov(∆z,W ) ≈ Cov((h2 − 1)(zp −m),W ) = (h2 − 1)Cov(z,W ). We can use this in
(11) to evaluate the mean phenotype for offspring following a round of selection

z̄o = z̄ + Cov(z,W )
W

+ (h2 − 1)Cov(z,W )
W

= z̄ + h2Cov(z,W )
W

Thinking about this in the context of the breeder’s equation (10) we can make the analogy between ∆S
and Cov(z,W )/W . That is, the selection differential is again given by the covariance between fitness and
phenotype.
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It is worth noting that (11) is also known as the Price Equation. The Price equation is just an identity
converting means of products into covariances. As such, it has some surprisingly ardent proponents and
nay-sayers. For our purposes, it is a convenient trick for thinking about selection.

Now we have in hand an approach for measuring selection in natural populations. And since z̄′ − z̄ = ∆S is
the selection differential, we can plug this in to the breeders equation (10) to find out the change in the mean
in the next generation. Doing so we get the following sequence of equivalent expressions

(12)

∆R = z̄o−z̄ = h2∆S = h2(z̄′−z̄) = h2Cov(z,W )
W̄

= VA(z)
VP (z)

Cov(z,W )
W̄

= VA(z)
W̄

Cov(z,W )
VP (z) = VA(z)

W̄
bW |z

The last term , bW |z = Cov(z,W )/VP (z) is known as the selection gradient (we will see why in a few
paragraphs). It is the slope of the regression of fitness on phenotype. So the change in the mean of a trait
after one generation is proportional to the slope of the linear regression of fitness on phenotypes. Since we
have not assumed that fitness is linear in the phenotype, this might seem kind of odd. But remember that all
we have said so far is that the change in the mean phenotype is driven by the average slope over the current
distribution of phenotypes. Nonlinearities in the fitness function will induce changes in other moments of the
phenotype distribution.

To see this, note that so far we havent said much about what constitutes a trait when calculating fitness.
This is a strength of the Price equation; all of what we did with fitness and covariances was pretty generic, so
it ought to apply regardless of how we define a trait. For example, what if instead of the mean we wanted to
know something about changes in some function of z? To put the Price equation to work we just need to
define a new trait z′ = f(z) and plug in. Let’s say that we want to know about changes in variance due to
selection on parents? We can find the selection differential for z′ = z2 by plugging this into (11) to find

z̄2
s = z̄2 + Cov(z2,W )

W

And since V ar(z) = E(z2)− E(z)2 we can find the change in variance from ∆V ar(z) = ∆E(z2)−∆E(z)2

which is

∆V ar(z) = Cov(z2,W )
W

−
[
Cov(z,W )

W

]2

You might be wondering why we didnt just plug in (z − z̄)2 (which would be very clever of you) to find the
change in the variance directly. The reason is that doing so doesnt allow for the change in z̄ due to selection
so the result tends to be biased high. Of course, if we already have an estimate of z̄′, we could plug (z − z̄′)2

into (11) to get the right answer.

An interesting thing happens if the “trait”" is fitness. That is, let’s say we want to know how mean fitness
changes across a generation, i.e. W̄o = W̄p + h2 Cov(W,W )

W
. To simplify this, recall two things. First, note

that Cov(W,W ) is the phenotypic variance in fitness, Vp(W ) from the definition of covariance. Second, the
heritability is given by the additive genetic variation in the trait divided by the phenotypic variation. So, in
this case, we could write this as h2 = VA(W )/VP (W ) where the subscripts A and P differentiate the genetic
and phenotypic variances. Putting these together, we get

∆W̄ = h2Cov(W,W )
W̄

= VA(W )
VP (W )

VP (W )
W̄

= VA(W )
W̄

Let’s re-write this in terms of relative fitness which is ω = W/W̄ . Recall that V ar(aX) = a2V ar(X) so that
V ar(ω) = V ar(W )/W̄ 2. Substituting this into the equation above, we get

(13)
∆W̄/W̄ = VA(ω)

12



This is Fisher’s fundamental theorem of natural selection which says that the proportional change in
mean fitness across a generation is equal to the additive genetic variance in relative fitness. Since variances
are always greater than or equal to zero, (13) says that the change in mean fitness is always positive.

Applications

To use this stuff to make some more specific predictions, we need to define a fitness function. The
most commonly used fitness functions in evolutionary quantitative genetics are linear, quadratic,
and Gaussian. Now, real fitness functions are unlikely to be precisely linear, quadratic or Gaus-
sian, but we can think of these as approximations to the real fitness function near the mean
phenotype or the optimal phenotype. To see why this might be relevant, imagine that we have
an arbitrary fitness function whose curvature is negligible over the observed range of phenotypes:
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In this figure, the fitness function is pretty wiggly, but within the range of observed phenotypes it is actually
nearly linear. Recall that covariance measures the linear relationship between two variables so we ought to
get a pretty good approximation of Cov(z,W ) in this case if we used a low-order approximation to W in the
vicinity of the mean. To see this let’s approximate to second order around the mean phenotype, z̄. To write
our approximation we’ll use the first two derivatives of W evaluated at z̄. That is

(14)
W (z) ≈W (z̄) +W ′(z̄)(z − z̄) + 1

2W
′′(z̄)(z − z̄)2

One thing that pops right out of this approximation is that mean fitness, W̄ , is approximately W̄ ≈
W (z̄) + 1

2W
′′(z̄)VP (z) where VP (z) is the phenotypic variance. Moreover, since W is nearly linear in the

vicinity of the population’s current phenotype distribution, the second (and higher) derivatives must be pretty
small. So we can ignore them which means
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(15)
W (z) ≈W (z̄) +W ′(z̄)(z − z̄)

and this implies that W̄ ≈W (z̄). To figure out the selection differential, we calculate

Cov(z,W ) ≈ Cov(z,W (z̄) +W ′(z̄)(z − z̄)) = W ′(z̄)VP (z)

And plugging this into (10) we find that the change in the mean when fitness is nearly linear over the current
range of phenotypes is given by

(16)

∆z̄ = h2Cov(z,W )
W̄

≈ h2W
′(z̄)VP (z)
W̄

= VA(z)
VP (z)

W ′(z̄)VP (z)
W̄

= VA(z)W
′(z̄)
W̄

Comparing this last bit to (12) we can see where the name ‘selection gradient’ comes from since bW |z ≈W ′(z̄).

To see why a Gaussian fitness function is often assumed, consider approximating ln[W ] in the vicinty of some
‘optimal’ phenotype z∗. To simplify the notation let r = ln[W ] be log-fitness, and approximating this to
second order we would get

(17)
r(z) = ln[W (z)] ≈ r(z∗) + r′(z∗)(z − z∗) + r′′(z∗)(z − z∗)2

Since z∗ is a local maximum in fitness, the first derivative term is 0 so that the approximation on the original
scale is

(18)
W (z) ≈W (z∗)e 1

2 r′′(z∗)(z−z∗)2

which looks alot like a normal or Gaussian distribution.

Selection on two traits

Although we’ve focused this far on the evolution of just one trait, it is far more likely that selection acts on
many traits at the same time. Multivariate quantitative genetics attempts to take this into account. The
math is a bit more involved than we have time for, but I’d like to highlight a few of the more counter-intuitive
things that happen when we move beyond one trait.

To begin, let’s think about what happens when there are two traits, call them z1 and z2. Again, we’ll say that
the phenotypes can be decomposed into genetic and environmental components, specifically, z1 = g1 + ε1 and
z2 = g2 + ε2. In keeping with our earlier model, we’ll assume that the genetic and environmental components
are independent. If we went a step further and assumed that all the g’s and ε’s are independent, we dont
need multivariate quantitative genetics at all - we can just use the single trait stuff we already developed, one
trait at a time. But since we are talking about two traits in the same individual, it probably doesnt make
much sense to assume that things are totally independent (and it’s way more interesting if they arent). So
let’s evaluate the covariance between traits 1 and 2-

Cov(z1, z2) = Cov(g1, g2) + Cov(ε1, ε2)

The usual notation is to let CA = Cov(g1, g2) be the ‘additive genetic covariance’ and CE = Cov(ε1, ε2) be
the environmental covariance. The two phenotypes can covary if either the underlying genotypes covary OR
if the environmental effects covary. In the first case, this can happen because the traits share common genes,
arise from a single locus with pleiotropic effects, or are simply linked on a chromosome. The environmental
effects can covary because individuals experience different environments that affect both traits. Common
examples include food availability and temperature which tend to affect lots of traits both directly and
indirectly regardless of whether they share a genetic basis. A first hint of the wierdness that can happen
in higher dimensions that can’t happen in just one is that it is now possible to have two traits that appear
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independent (or nearly so) because the genetic and environmental covariances cancel. That is, if we have a
situation where Cov(g1, g2) > 0 and Cov(ε1, ε2) < 0 the phenotypic covariance will acutally be less than the
genetic covariance. . .

Next, let’s think about selection. To keep things simple, we’ll look at the linear approximation to the fitness
function (15) and extend this to two dimensions. To do so, we’ll need the partial derivatives of fitness with
respect to z1 and z2.

Mathematical Aside - Partial Derivatives

Recall that in 1-dimension, the derivative gave us the slope of the function evaluated at a point. Similarly,
the partial derivative of a function of more than one variable is the slope in a given direction. Usually, we
take partial derivatives in directions corresponding to coordinate axes. Let’s think about that - if we have
a function, f(x, y) and we want to know the slope in the x-direction, we would think about the slope the
slope of the line connecting two points that have different values of x and the same value of y, i.e. slope=
[f(x2, y)− f(x1, y)]/[x2 − x1]. Setting x1 = x and x2 = x+ ∆x, the slope is [f(x+ ∆x, y)− f(x, y)]/∆x and
taking the limit as ∆x→ 0, we get the partial derivative of f with respect to x, which is written as

∂f

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)
∆x

Similarly the partial derivative with respect to y is

∂f

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)
∆y

Operationally, we take the partial derivative with respect to one variable by treating the over variables as
constants. This is illustrated in the figure below
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__ ##Returning to selection##

We’ll look at the linear approximation to the fitness function (15) and extend this to two dimensionsusing
the partial derivatives of fitness with respect to z1 and z2 which is given by

(19)
W (z1, z2) ≈W (z̄1, z̄2) + ∂W

∂z1
(z1 − z̄1) + ∂W

∂z2
(z2 − z̄2)

where the partial derivatives are evaluated at the mean values for each trait. We then use this to determine
the covariance between z1 and fitness which gives us the selection differential on z1:

Cov(z1,W ) ≈ Cov(z1,W (z̄1, z̄2) + ∂W

∂z1
(z1 − z̄1) + ∂W

∂z2
(z2 − z̄2)) = ∂W

∂z1
V ar(z1) + ∂W

∂z2
Cov(z1, z2)

From here we can see that the selection differential on trait 1 depends not only on the fitness gradient with
respect to trait 1, but also the indirect effect of selection on trait 2. (Obviously, there is an analogous equation
for selection on trait 2 which looks just like the above with all the 1’s and 2’s swapped). So even if fitness
doesnt depend on z1, we can have selection on trait 1 driven by Cov(z1, z2). Even more counter-intuitively,
we can have selection on trait 2 drag trait 1 in a direction in which fitness actually decreases. The condition
for this is that the sign of ∂W

∂z1
V ar(z1) + ∂W

∂z2
Cov(z1, z2) is opposite the sign of ∂W

∂z1
. Assuming for example

that this is positive, then the direction of selection is reversed when ∂W
∂z1

V ar(z1) < −∂W
∂z2

Cov(z1, z2) which
requires that frac∂W∂z2 and Cov(z1, z2) have opposite signs (at a miminum).

The results for evolutionary changes following a round of selection are analogous:
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(20)
z̄1o − z̄1 ≈

∂W

∂z1
VA(z1) + ∂W

∂z2
CA(z1, z2)

Again, evolution of trait 1 is now influenced by selection on trait 2 but the effect is mediated through
the genetic covariance rather than the phenotypic covariance.

Many Traits

I feel sort of compelled to go on with the general case, which requires the use of linear algebra. The
generalization from the 2-d case is fairly straightforward. To begin, we need to define some notation. Let z
be a vector of n different traits, i.e.

z =


z1
z2
...
zn


and let the population mean prior to selection be z̄. Define the genetic and environmental components of
mathbfz analogously, that is

z = g + ε→


z1
z2
...
zn

 =


g1
g2
...
gn

+


ε1
ε2
...
εn


In light of this, we will arrange the variances and covariances into matrices. The phenotypic covariance
matrix, P, is given by

P =


V (z1) Cov(z1, z2) · · · Cov(z1, zn)

Cov(z2, z1) V (z2) · · · Cov(z2, zn)
...

...
. . .

...
Cov(zn, z1) Cov(zn, z2) · · · V (zn)


Similarly, the genetic covariance matrix, G is given by

G =


VA(z1) CovA(z1, z2) · · · CovA(z1, zn)

CovA(z2, z1) VA(z2) · · · CovA(z2, zn)
...

...
. . .

...
CovA(zn, z1) CovA(zn, z2) · · · VA(zn)


The corresponding ‘environmental’ covariance matrix, E, is defined similarly.

As in the single-trait version, the phenotypic variance-covariance matrix is decomposed as P = G + E. This
is easy to see if you recognize that the (i, j)th element of P is given by the sum of the (i, j)th elements
of G and E. That is, when i 6= j, we have Cov(zi, zj) = Cov(gi, gj) + Cov(εi, εj) just it like did in
the two trait case, and when i = j V ar(zi) = VA + VE.

Making the analogy with (10), we can think about a multivariate version of the breeder’s
equation. To do so, we need a multivariate version of heritability and a vector of selection
differentials, ∆S. Recalling that in 1-d heritability is h2 = VA/VP , the multivariate analog is
H = GP−1 where P−1 is the ‘inverse’ of the phenotypic covariance matrix. The inverse satisfies
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the identity P−1P = I where I is the ‘identity’ matrix. I is a matrix with ones on the diagonal
and zeros everywhere else which plays the role of 1 in the 1-d case (i.e. 1x = x→ IX = X and
(1/x)x = 1→ X−1X = I).

The vector of selection differentials is given by ∆S = z̄′ − z̄

∆S =


∆S1
∆S2
...

∆Sn


Putting these together we have the multivariate breeders equation

(21)
z̄o − z̄ = ∆R = H∆S = GP−1∆S

It is worth pointing out that almost no one uses H for multivariate heritability; the preference
seems to be to keep GP−1 distinct.

To measure selection, we still use the covariance between the traits and fitness, though there is
now a vector of covariances. To keep things intuitive, we will stick with the linear approxima-
tion to fitness analogous to (19) but with n traits. We can write this approximation formally
as

W (z) ≈W (z̄) +∇W · (z− z̄)

where the notation ∇W · (z− z̄) is the multivariate calculus / linear algebra version of the sum
in (19), that is

∇W · (z− z̄) =
n∑

i=1

∂W

∂zi
(zi − z̄i)

Evaluating the covariance between the trait vector z and W using this approximation, we get

(22)
∆S = P∇W

which is a super-compact way of saying

∆Si =
n∑

i=1

∂W

∂zi
Cov(zi, zj)

Finally, we can plug this into the multivariate breeders equation (21) to get

z̄o − z̄ = GP−1∆S = GP−1P∇W = G∇W

This is actually how we derived (20) - without the linear algebra, it takes alot of tedious
algebra to cancel all the phenotypic covariances! Also, we can see that the chain of reasoning
is precisely what it was in the 1-d case. In fact, we can see from the second and fourth terms
that P−1∆S = ∇W. This is actually the origin of the term ‘selection gradient’ for the multiple
regression of fitness on traits, since bW|Z = P−1∆S

There is, of course, alot more we could do, with this stuff, but this is all I can write for now.
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